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1. Introduction  

Efficient water service management requires timely detection of irregularities, such as valve 

malfunctions, pressure drops, or unexpected usage patterns. Traditional methods often rely on 

reactive measures, generalized thresholds and post-analysis using simulations, which can result in 

delays and inefficiencies.  

Vision for a research-centered pilot project: We propose to develop an AI-powered anomaly 

detection system by leveraging historical data analysis, spatial-temporal modeling, and graph 

neural networks (GNNs) integrated with simulation tools to enhance the reliability and efficiency 

of water infrastructure management. In particular, the system will analyze temporal-spatial 

patterns in historical water service data and real-time sensing data, such as pressure levels, flow 

rates, and consumption metrics, to detect anomalies at a fine granularity. This proposal leverages 

cutting-edge AI techniques to enhance the resilience and efficiency of water service systems. By 

starting with a focused case study, we aim to develop a robust, scalable solution that can transform 

water infrastructure management. 

Our team has been working on various projects on developing human-centered and responsible 

AI-powered solutions for smart cities [1-16], including safe and reliable AI-based intelligent 

systems, physics-informed machine learning, deep learning voice analysis and mobile / NLP / AI 

systems for emergency response and healthcare, integrating heterogeneous city services, etc. In 

this project, we will work closely with the engineers and domain experts in water service 

optimization to gather the data and develop the AI model.    

2. Proposed Solution 

We propose six objectives for this two-year project. Specifically, Objectives 1 through 4 are 

centered on the development and evaluation of the system, and will be carried out during the first 

year. Objectives 5 and 6 focus on transitioning the system to real-world deployment, incorporating 

real-time data inputs and developing a dashboard to visualize detection results. 

Objective 1. Domain Expert-Centered Design and Historical Data Analysis.  

We plan to start with a domain expert-centered design and comprehensive historical data analysis 

of a one-year dataset from a small pilot area. This analysis will focus on key hydraulic parameters 

such as water pressure, flow rates, and usage patterns to identify baseline behaviors and historical 

anomalies. These insights will serve as foundational inputs for model development. 

To start with, we will work with a domain expert to identify the existing data, including the data 

being used in the simulation and additional real-time ones if exists. Data preprocessing and 

cleaning will be performed to ensure data integrity. This involves handling missing values and 

inconsistencies in sensor data, synchronizing time-series data from different sources, and filtering 

out erroneous readings using statistical and rule-based approaches.  
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Secondly, we will focus on studying the anomaly patterns from the historical data. One challenge 

is the sparsity of the anomaly data, i.e., there are many more normal data than anomaly data in the 

dataset. We plan to take two approaches targeting this problem: (1) data augmentation through 

statistic and simulation-based data synthesizes, and (2) anomaly property identification and 

knowledge injection.  

Objective 2. Developing a GNN-based Deep Learning Model. 

To effectively detect anomalies within the water distribution network, a Graph Neural Network 

(GNN)-based deep learning model will be developed to learn both spatial and temporal 

dependencies within the water distribution system. 

Background: Graph Neural Networks 

(GNNs) are a class of deep learning models 

specifically designed to process and analyze 

graph-structured data. Unlike traditional 

neural networks that operate on Euclidean 

data (e.g., images or sequences), GNNs 

excel at modeling complex relational 

structures such as social networks, 

molecular graphs, and citation networks. In 

recent years, GNNs have also shown strong 

potential in infrastructure applications, 

particularly in water distribution systems 

(WDS), where nodes represent junctions or 

tanks and edges represent pipes. By 

leveraging the inherent graph topology of 

WDS, GNNs enable tasks such as leak 

detection, sensor placement optimization, 

anomaly detection, and flow/pressure 

prediction in an end-to-end learning 

framework.  

The core mechanism underlying most GNNs is information passing. In each layer, a node updates 

its feature representation by aggregating information from its neighbors. This process can be 

generalized into three steps: message computation: each node collects messages from its neighbors. 

Aggregation: these messages are combined (e.g., summed, averaged). Update: the node updates 

its own embedding using the aggregated message, typically through a neural network. The 

equation is: 𝑥𝑣
(𝑘)

= UPDATE
(k) (𝑥𝑣

(𝑘−1)
,  AGGREGATE

(k) ({𝑥𝑢
(𝑘−1)

: 𝑢 ∈ 𝒩(𝑣)})), where 𝑥𝑣
(𝑘)

is 

the node embedding at layer 𝑘 , and 𝒩(𝑣) is the neighborhood of node 𝑣 . Through multiple 

message-passing layers, a node can incorporate information from multi-hop neighbors, allowing 

GNNs to capture both local and global graph structure. One of the distinguishing features of GNNs 

is they are designed for various analytic tasks depending on the target granularity.  

As illustrated in Figure 1, GNNs can be designed for node-level, edge-level, and graph-level tasks. 

Node level tasks (figure 1b): Node-level GNNs aim to predict properties of individual nodes, such 
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as for node classification or regression. For instance, given a person's social network graph, a GNN 

can infer the likely interests or attributes of their friends. In this case, the GNN aggregates 

information from neighboring nodes through several graph convolution layers and then applies a 

softmax classifier to produce the class probabilities for each node. Edge level tasks (figure 1c): 

These GNNs are used for link prediction and edge classification, where the goal is to infer the 

existence or type of connection between two nodes. For example, given two individuals in a 

network, the model can predict whether they are friends, colleagues, or strangers by learning a 

representation of each node and computing a function (e.g., dot product or MLP) over their 

embeddings. Graph level tasks (figure 1a): In graph-level GNNs, the entire graph is treated as a 

single data instance. These models are often used in chemistry, where molecules are represented 

as graphs and the task is to classify the molecule (e.g., toxic vs. non-toxic). After node-level 

convolutions, the GNN aggregates node features into a global graph representation (using 

techniques like sum, mean, or pooling), which is then passed to a classifier.  

Proposed Plan: The first step is to construct a graph representation of the water network, where 

nodes will represent critical system components such as valves, junctions, tanks, and pumps, while 

edges will denote physical connections between these components, as shown in figure 2. Node 

features will be assigned based on time-series data (e.g., pressure, flow, and consumption) and 

connectivity attributes, while dynamic adjacency matrices will be generated to capture evolving 

relationships over time. 

  

Figure 2: An example of converting a water pipeline system into a graph representation. On the 

left, each valve or junction is modeled as a node, while the pipes connecting them as edges.  

The deep learning architecture will utilize Graph Convolutional Networks (GCNs) or Graph 

Attention Networks (GATs) to extract spatial relationships between nodes. Additionally, Recurrent 

Graph Neural Networks (RGNNs) or Temporal Graph Networks (TGNs) will be implemented to 

incorporate time-dependent behavior. An encoder-decoder structure will be applied to model 

normal operational patterns and detect deviations from expected behaviors. The anomaly detection 

mechanism will involve training the model in a semi-supervised or unsupervised manner to 

recognize deviations from learned patterns. Reconstruction-based anomaly detection techniques, 

such as Autoencoders and Variational Autoencoders, will be explored, alongside contrastive 

learning methods to enhance the model's ability to differentiate between normal and anomalous 

patterns. The GNN-based approach will provide an interpretable and scalable framework for 

anomaly detection in water distribution networks. 
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Objective 3. Simulation Integration and Physics Informed GNN model.  

We will first carefully evaluate the GNN model proposed by Objective 2. To enhance the model’s 

accuracy and robustness, leveraging our previous work on physics-informed machine learning, we 

will explore a physics-informed machine learning approach by integrating hydraulic simulations 

into the deep learning framework.   

Specifically, we plan to build a hybrid model will by combining physics-driven models with data-

driven GNN-based architectures. We will work closely with the domain expert to better understand 

the physics models in the current simulation and explore the best approach to incorporate it into 

the designed the GNN model.  

The possible principles we will explore include, (1) Mass conservation: it ensures that the total 

inflow to a junction equals the total outflow. This is expressed as: ∑ 𝑄𝑖𝑛 = ∑ 𝑄𝑜𝑢𝑡  Incorporating 

this constraint helps enforce the physical law of continuity in the GNN model, particularly at 

junction nodes in the water network. (2) Energy conservation along pipeline segments, typically 

modeled using this equation, which accounts for head loss due to friction: ℎ𝑓 = 𝑓 ⋅
𝐿

𝐷
⋅

𝑣2

2𝑔
  This 

equation helps capture pressure drops due to flow resistance. (3) Hazen–Williams equation: In 

practice, water utilities often rely on this equation for its simplicity and effectiveness in modeling 

flow in pressurized systems: ℎ𝑓 = 10.67 ⋅
𝐿

𝐶1.85𝐷4.87 𝑄1.85. And it is often used in WDS datasets 

when combine with physics informed GNNs. 

By embedding these physical constraints into the GNN architecture—either through the message-

passing process or as part of the loss function—we aim to create a robust and interpretable model 

that not only fits observed data but also adheres to the fundamental laws of fluid dynamics in real-

world water systems. 

Objective 4. Pilot Case Study and Evaluation Plan.  

Before scaling the solution to larger water networks, a controlled pilot case study will be conducted 

using the one-year dataset from the selected small area. 

The first stage of this case study will focus on model training and validation. Data will be 

partitioned into training, validation, and test sets to optimize model performance. The model’s 

effectiveness will be evaluated under different operational conditions, comparing normal and 

anomaly scenarios to ensure it can accurately detect deviations. Sensitivity analysis will be 

performed to determine key influencing factors that impact system performance. 

Validation and performance benchmarking will be conducted by comparing GNN model 

predictions with simulation results to assess consistency. The robustness of the model will be 

evaluated against noise, sensor drift, and missing data scenarios, with performance metrics such 

as Precision, Recall, F1-score, used to measure effectiveness.   

Specifically, we divide the evaluation into two phases with public datasets (as shown in Table 1) 

and Nashville datasets. (1) Hanoi Water Distribution Network [1]: the Hanoi network is one of the 

most used benchmark datasets for testing water distribution algorithms and graph-based models. 

It is a synthetic network developed to simulate a real urban water supply system and is often used 

in optimization, leak detection, and pipe failure studies. (2) L-Town Water Network [2]: The L-

Town dataset is another well-known water distribution network used in research. It represents a 
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realistic medium-sized network and is more complex than the Hanoi network. L-Town is often 

used in anomaly detection, simulation of sensor placement strategies, and resilience analysis. 

 Hanoi [1] L-Town [2] 

Nodes 31 388 

Pipes 43 429 

Reservoirs 3 1 

Pipe Attributes Length, diameter, roughness — 

Available Data Hydraulic heads, pressures Flow, pressure, demand 

Time-Series — Yes (multi-day simulations) 

Table 1: Detailed features of the two datasets. “—” indicates that the corresponding feature 

is not available in the dataset. 

Objective 5. Integration of Real-Time Data.  

Objective 5 focuses on the critical task of integrating real-time data into large-scale water 

distribution networks to enhance the reliability and responsiveness of these systems. This is a 

complex and essential step in transitioning from theoretical modeling to practical implementation. 

In many engineering and scientific disciplines that deal with physical systems, one of the most 

persistent challenges is known as the simulation-to-reality gap. This refers to the discrepancy that 

often arises when a computational model, which performs exceptionally well during testing with 

simulated or controlled data, fails to maintain the same level of performance when applied in real-

world scenarios. The root of this problem lies in the inherent unpredictability, noise, and variability 

of actual environmental conditions—factors that are difficult to fully capture in simulations. In the 

context of water distribution systems, this gap can lead to suboptimal decision-making and 

inefficiencies when the model is deployed in live settings. Therefore, our primary objective in this 

phase is to bridge that gap by refining our predictive model to handle the complexities of real-time, 

real-world data. This includes equipping the model to process and interpret data that may be noisy, 

incomplete, or subject to significant uncertainty. By developing robust algorithms and 

incorporating adaptive mechanisms, we aim to ensure that the model can deliver accurate and 

dependable predictions, even under dynamic and less predictable operating conditions. 

Objective 6. Dashboard: Display Real-Time Prediction and Information. 

In this stage, we aim to design and develop an interactive dashboard that presents real-time 

predictions and key system information generated by the GNN-based model. The purpose of the 

dashboard is to provide an intuitive and accessible interface for engineers and operators monitor 

the water distribution network, interpret model outputs, and respond promptly to anomalies or 

emerging issues.  

The dashboard will display real-time data such as flow rates, pressure levels, and predicted events 

(e.g., potential leaks or abnormal patterns) across the network. Predictions will be visualized 

spatially over the network graph, enabling users to see which nodes or pipes are affected. In 

addition, the dashboard will include time-series plots, color-coded alerts, and historical trend 

comparisons to help contextualize the predictions. Ultimately, this tool will serve as a bridge 

between the GNN model’s predictive capabilities and actionable insights, facilitating the practical 

deployment of AI-driven monitoring in operational water infrastructure. 
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3. Deliveries  

In summary, we envision below key deliveries in this project.  

• A comprehensive data analysis and integration process that combines historical and real-

time sensor data, guided by domain experts to ensure the inclusion of relevant operational 

insights. 

• The primary deliverable will be a Graph Neural Network (GNN)-based deep learning 

model capable of detecting anomalies within the water distribution network by learning 

both spatial and temporal dependencies. 

• The integration of physics-based simulation into the GNN framework to build a more 

accurate and robust hybrid model. 

• Comprehensive evaluation and pilot study.  

• A Dashboard presenting real-time predictions and key system information.  
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BUDGET JUSTIFICATION 

Vanderbilt University 

Early Warning Detection for Water Management Systems  

 

A. SENIOR PERSONNEL 

Meiyi Ma Principal Investigator 

Dr. Ma will serve as Principal Investigator. They will dedicate 0.5 CAL effort months to the project. They 

will be responsible for leading the development of the whole project and managing the team and 

collaboration with the Water Service Department. 

 

Ayan Mukhopadhyay, CO-PI 

Dr. Mukhopadhyay will serve as CO-PI. They will dedicate 0.50 CAL effort months to the project. They 

will be responsible for leading the development of dashboard and real-time integration and collaborating 

on the algorithm development and evaluation. 

Total Senior Personnel (A): $29,292 

 

B. OTHER PERSONNEL 

TBA 1, Research Engineer 

One TBA Research Engineer will serve as a Research Engineer. They will dedicate 6.0 CAL in effort 

months to the project in Year 2. They will be responsible for piloting and deploying the system and 

developing the dashboard. 

 

One (1) TBD Graduate Student 

One graduate student will serve on this project and dedicate 12.0 CAL effort months in Year 1 and 3.0 CAL 

in Year 2. They will be responsible for developing and evaluating the AI-based anomaly detection 

algorithm. 

 

 

 

Total Other Personnel (B): $91,210 

 

Total Salaries and Wages (A + B): $120,502 

 

C. FRINGE BENEFITS 

The Vanderbilt University Faculty and Staff fringe benefit rate is 25.1% for full-time faculty and staff and 
10.2% for temp. staff for FY25 (details can be found here). Salary and wage figures are based on yearly 

salaries using Vanderbilt University Human Resource categories.  Salary is increased by 3.0% annually. 

 
Total Fringe Benefits (C): $17,952 

 

Total Salaries, Wages and Fringe Benefits (A + B + C): $138,454 

 

 

D. OTHER DIRECT COSTS 

Graduate Tuition 

35% of VU Graduate Student academic year tuition is charged for the graduate student but is not included 

in the Facilities and Administrative base. The tuition charge is calculated based on graduate student FTE. 
The rate is $2,419 per credit hour with a minimum of $200. $15,310 is charged per full-time student in Year 

1. There is a 3% inflation rate each year. 

Total Graduate Tuition: $18,697 
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Graduate Insurance and Health Fee 

Graduate Health Insurance and Student Health Fee are charged for the graduate student to the project. The 

Graduate Health Insurance charge is calculated based on grad student FTE. There is a $4,314 cost for 

annual health insurance with $441 health per semester and $130 for the summer. $5,326 is charged per 

full-time student in Year 1. There is a 7% inflation rate each year.  

Total Graduate Insurance: $6,472 

 

Total Other Direct Costs (G): $25,169 

 

E. Total Direct Costs (A through G): $ 163,623 

 

F. INDIRECT (F&A) COSTS 

The current federally negotiated F&A rate with the Department of Health and Human Services for 

Vanderbilt University is 58.5% for FY25.  The current rate agreement date is 5/15/24. F&A is charged on 

the Modified Total Direct Costs (MTDC).  Graduate Tuition, capital equipment, participant support costs 

and subcontractor costs in excess of $25,000 is excluded from the MTDC base used to calculate F&A costs. 

 

Modified Total Direct Cost Base: $ 144,926 

I. Indirect (F&A) Costs: $84,782 

 

J. Total Direct and Indirect Costs (H + I): $248,405 
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